Showing posts with label jukowski. Show all posts
Showing posts with label jukowski. Show all posts

Monday, July 18, 2011

Jukowsi Transformation

The following code applies the Jukowsi transformation to various circles on the complex plane.
from pylab import plot,show,axis,subplot
import cmath
from numpy import *

def cplxcircm(radius,center):
 """Returns an array z where every z[i] is a point 
    on the circle's circumference on the complex plane"""
 teta = linspace(0,pi*2,150)
 z = []
 for a in teta:
  # rotating of radius+0j of a radians and translation
  zc = (radius+0j)*cmath.exp(complex(0,a)) - center
  z.append(zc)
 return array( z, dtype=complex )

def jukowsi(z,L):
 return z+L/z # asimmetric Jukowski transformation

# let's try the transformation on three different circles
subplot(131)
z = cplxcircm(1,complex(0.5,0)) #1st circle
w = jukowsi(z,1) # applying the trasformation
plot(real(z),imag(z),'b',real(w),imag(w),'r')
axis('equal')

subplot(132)
z = cplxcircm(0.8,complex(0.4,0.3))
w = jukowsi(z,0.188) 
plot(real(z),imag(z),'b',real(w),imag(w),'r')
axis('equal')

subplot(133)
z = cplxcircm(1.1,complex(0.1,0.0))
w = jukowsi(z,1)
plot(real(z),imag(z),'b',real(w),imag(w),'r')
axis('equal')
show()
The script shows the following figure. Every subplot shows two curves on the complex plane (x real values, y imaginary values), the blue curve is the starting curve and the red is the transformation.