Showing posts with label knn. Show all posts
Showing posts with label knn. Show all posts

Thursday, April 26, 2012

K-Nearest Neighbour Classifier

The Nearest Neighbour Classifier is one of the most straightforward classifier in the arsenal of machine learning techniques. It performs the classification by identifying the nearest neighbours to a query pattern and using those neighbors to determine the label of the query. The idea behind the algorithm is simple: Assign the query pattern to the class which occurs the most in the k nearest neighbors. In this post we'll use the function knn_search(...) that we have seen in the last post to implement a K-Nearest Neighbour Classifier. The implementation of the classifier is as follows:
from numpy import random,argsort,argmax,bincount,int_,array,vstack,round
from pylab import scatter,show

def knn_classifier(x, D, labels, K):
 """ Classify the vector x
     D - data matrix (each row is a pattern).
     labels - class of each pattern.
     K - number of neighbour to use.
     Returns the class label and the neighbors indexes.
 """
 neig_idx = knn_search(x,D,K)
 counts = bincount(labels[neig_idx]) # voting
 return argmax(counts),neig_idx
Let's test the classifier on some random data:
 # generating a random dataset with random labels
data = random.rand(2,150) # random points
labels = int_(round(random.rand(150)*1)) # random labels 0 or 1
x = random.rand(2,1) # random test point

# label assignment using k=5
result,neig_idx = knn_classifier(x,data,labels,5)
print 'Label assignment:', result

# plotting the data and the input pattern
# class 1, red points, class 0 blue points
scatter(data[0,:],data[1,:], c=labels,alpha=0.8)
scatter(x[0],x[1],marker='o',c='g',s=40)
# highlighting the neighbours
plot(data[0,neig_idx],data[1,neig_idx],'o',
  markerfacecolor='None',markersize=15,markeredgewidth=1)
show()
The script will show the following graph:



The query vector is represented with a green point and we can see that the 3 out of 5 nearest neighbors are red points (label 1) while the remaining 2 are blue (label 2).
The result of the classification will be printed on the console:
Label assignment: 1
As we expected, the green point have been assigned to the class with red markers.

Saturday, April 14, 2012

k-nearest neighbor search

A k-nearest neighbor search identifies the top k nearest neighbors to a query. The problem is: given a dataset D of vectors in a d-dimensional space and a query point x in the same space, find the closest point in D to x. The following function performs a k-nearest neighbor search using the euclidean distance:
from numpy import random,argsort,sqrt
from pylab import plot,show

def knn_search(x, D, K):
 """ find K nearest neighbours of data among D """
 ndata = D.shape[1]
 K = K if K < ndata else ndata
 # euclidean distances from the other points
 sqd = sqrt(((D - x[:,:ndata])**2).sum(axis=0))
 idx = argsort(sqd) # sorting
 # return the indexes of K nearest neighbours
 return idx[:K]
The function computes the euclidean distance between every point of D and x then returns the indexes of the points for which the distance is smaller.
Now, we will test this function on a random bidimensional dataset:
# knn_search test
data = random.rand(2,200) # random dataset
x = random.rand(2,1) # query point

# performing the search
neig_idx = knn_search(x,data,10)

# plotting the data and the input point
plot(data[0,:],data[1,:],'ob',x[0,0],x[1,0],'or')
# highlighting the neighbours
plot(data[0,neig_idx],data[1,neig_idx],'o',
  markerfacecolor='None',markersize=15,markeredgewidth=1)
show()
The result is as follows:


The red point is the query vector and the blue ones represent the data. The blue points surrounded by a black circle are the nearest neighbors.