Well, you get a hopalong fractal.
Let's plot this fractal using Pylab. The following function computes n points using the equations above:
from __future__ import division from numpy import sqrt,power def hopalong(x0,y0,n,a=-55,b=-1,c=-42): def update(x,y): x1 = y-x/abs(x)*sqrt(abs(b*x+c)) y1 = a-x return x1,y1 xx = [] yy = [] for _ in xrange(n): x0,y0 = update(x0,y0) xx.append(x0) yy.append(y0) return xx,yyand this snippet computes 40000 points starting from (-1,10):
from pylab import scatter,show, cm, axis from numpy import array,mean x = -1 y = 10 n = 40000 xx,yy = hopalong(x,y,n) cr = sqrt(power(array(xx)-mean(xx),2)+power(array(yy)-mean(yy),2)) scatter(xx, yy, marker='.', c=cr/max(cr), edgecolor='w', cmap=cm.Dark2, s=50) axis('equal') show()Here we have one of the possible hopalong fractals:
Varying the starting point and the values of a, b and c we have different fractals. Here are some of them: