Showing posts with label random. Show all posts
Showing posts with label random. Show all posts

Monday, January 14, 2013

Box-Muller Transformation

The Box-Muller transform is a method for generating normally distributed random numbers from uniformly distributed random numbers. The Box-Muller transformation can be summarized as follows, suppose u1 and u2 are independent random variables that are uniformly distributed between 0 and 1 and let


then z1 and z2 are independent random variables with a standard normal distribution. Intuitively, the transformation maps each circle of points around the origin to another circle of points around the origin where larger outer circles are mapped to closely-spaced inner circles and inner circles to outer circles.
Let's see a Python snippet that implements the transformation:
from numpy import random, sqrt, log, sin, cos, pi
from pylab import show,hist,subplot,figure

# transformation function
def gaussian(u1,u2):
  z1 = sqrt(-2*log(u1))*cos(2*pi*u2)
  z2 = sqrt(-2*log(u1))*sin(2*pi*u2)
  return z1,z2

# uniformly distributed values between 0 and 1
u1 = random.rand(1000)
u2 = random.rand(1000)

# run the transformation
z1,z2 = gaussian(u1,u2)

# plotting the values before and after the transformation
figure()
subplot(221) # the first row of graphs
hist(u1)     # contains the histograms of u1 and u2 
subplot(222)
hist(u2)
subplot(223) # the second contains
hist(z1)     # the histograms of z1 and z2
subplot(224)
hist(z2)
show()
The result should be similar to the following:


In the first row of the graph we can see, respectively, the histograms of u1 and u2 before the transformation and in the second row we can see the values after the transformation, respectively z1 and z2. We can observe that the values before the transformation are distributed uniformly while the histograms of the values after the transformation have the typical Gaussian shape.

Saturday, September 29, 2012

Weighted random choice

Weighted random choice makes you able to select a random value out of a set of values using a distribution specified though a set of weights. So, given a list we want to pick randomly some elements from it but we need that the chances to pick a specific element is defined using a weight. In the following code we have a function that implements the weighted random choice mechanism and an example of how to use it:
from numpy import cumsum, sort, sum, searchsorted
from numpy.random import rand
from pylab import hist,show,xticks

def weighted_pick(weights,n_picks):
 """
  Weighted random selection
  returns n_picks random indexes.
  the chance to pick the index i 
  is give by the weight weights[i].
 """
 t = cumsum(weights)
 s = sum(weights)
 return searchsorted(t,rand(n_picks)*s)

# weights, don't have to sum up to one
w = [0.1, 0.2, 0.5, 0.5, 1.0, 1.1, 2.0]

# picking 10000 times
picked_list = weighted_pick(w,10000)

# plotting the histogram
hist(picked_list,bins=len(w),normed=1,alpha=.8,color='red')
show()
The code above plots the distribution of the selected indexes:


We can observe that the chance to pick the element i is proportional to the weight w[i].

Friday, July 20, 2012

Distribution fitting with scipy

Distribution fitting is the procedure of selecting a statistical distribution that best fits to a dataset generated by some random process. In this post we will see how to fit a distribution using the techniques implemented in the Scipy library.
This is the first snippet:
from scipy.stats import norm
from numpy import linspace
from pylab import plot,show,hist,figure,title

# picking 150 of from a normal distrubution
# with mean 0 and standard deviation 1
samp = norm.rvs(loc=0,scale=1,size=150) 

param = norm.fit(samp) # distribution fitting

# now, param[0] and param[1] are the mean and 
# the standard deviation of the fitted distribution
x = linspace(-5,5,100)
# fitted distribution
pdf_fitted = norm.pdf(x,loc=param[0],scale=param[1])
# original distribution
pdf = norm.pdf(x)

title('Normal distribution')
plot(x,pdf_fitted,'r-',x,pdf,'b-')
hist(samp,normed=1,alpha=.3)
show()
The result should be as follows


In the code above a dataset of 150 samples have been created using a normal distribution with mean 0 and standar deviation 1, then a fitting procedure have been applied on the data. In the figure we can see the original distribution (blue curve) and the fitted distribution (red curve) and we can observe that they are really similar.
Let's do the same with a Rayleigh distribution:
from scipy.stats import norm,rayleigh

samp = rayleigh.rvs(loc=5,scale=2,size=150) # samples generation

param = rayleigh.fit(samp) # distribution fitting

x = linspace(5,13,100)
# fitted distribution
pdf_fitted = rayleigh.pdf(x,loc=param[0],scale=param[1])
# original distribution
pdf = rayleigh.pdf(x,loc=5,scale=2)

title('Rayleigh distribution')
plot(x,pdf_fitted,'r-',x,pdf,'b-')
hist(samp,normed=1,alpha=.3)
show()
The resulting plot:


As expected, the two distributions are very close.

Tuesday, July 12, 2011

Dice rolling experiment

If we roll a die a large number of times, and we compute the mean and variance, as exaplained here, we’d expect to obtain a mean = 3.5 and a variance = 2.916. Let's simulate that with a script:
import pylab
import math
 
# Rolling the die 1000 times
v = pylab.randint(1,7,size=(1000))

print 'mean',pylab.mean(v)
print 'variance',pylab.var(v)

pylab.hist(v, bins=6) # histogram of the outcoming
pylab.xlim(1,6)
pylab.show()
Here's the result:
mean 3.435
variance 2.781775